Correlation of symmetrical gaits and whole body mechanics: debunking myths in locomotor biodynamics.

نویسندگان

  • Audrone R Biknevicius
  • Stephen M Reilly
چکیده

Independent maturation of gait (Hildebrand) and whole body mechanics (Cavagna et al.) traditions in locomotor analyses has led to conflicting terminology. Re-evaluation of these traditions yields three primary insights. First, walking and running should be recognized by their fundamentally different mechanics. Because duty factor fails to consistently distinguish these mechanics, its use in discriminating walks from runs should be abandoned in preference to parameters that more accurately reflect the movements of the center of mass (COM; phase difference in external mechanical energy or Froude number). Second, "trot" should be reserved as a descriptor of a particular footfall pattern. This and all gait terms lack explicit information about limb compliance and thus COM movements. Third, symmetrical gait definitions should be broadened to reflect the four primary footfall patterns: the lateral-couplet dominated pattern of the pace, the diagonal-couplet dominated pattern of the trot and the more independent sequencing of footfalls of the two singlefoots. Intermediate gaits (perennially confusing and a mouthful to pronounce) are thereby subsumed by these four discrete gaits. Confusion between gait terminologies would be avoided if limb phase were consistently reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrical gaits and center of mass mechanics in small-bodied, primitive mammals.

Widely accepted relationships between gaits (footfall patterns) and center of mass mechanics have been formulated from observations for cursorial mammals. However, sparse data on smaller or more generalized forms suggest a fundamentally different relationship. This study explores locomotor dynamics in one eutherian and five metatherian (marsupials) mammals-all small-bodied (<2 kg) with generali...

متن کامل

The correlated evolution of biomechanics, gait and foraging mode in lizards.

Foraging mode has molded the evolution of many aspects of lizard biology. From a basic sit-and-wait sprinting feeding strategy, several lizard groups have evolved a wide foraging strategy, slowly moving through the environment using their highly developed chemosensory systems to locate prey. We studied locomotor performance, whole-body mechanics and gaits in a phylogenetic array of lizards that...

متن کامل

Effects of early-stage aging on locomotor dynamics and hindlimb muscle force production in the rat.

Attenuation of locomotor function is common in many species of animals as they age. Dysfunctions may emerge from a constellation of age-related impairments, including increased joint stiffness, reduced ability to repair muscle tissue, and decreasing fine motor control capabilities. Any or all of these factors may contribute to gait abnormalities and substantially limit an animal's speed and mob...

متن کامل

The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.

Human bipedal locomotion is characterized by a habitual heel-strike (HS) plantigrade gait, yet the significance of walking foot-posture is not well understood. To date, researchers have not fully investigated the costs of non-heel-strike (NHS) walking. Therefore, we examined walking speed, walk-to-run transition speed, estimated locomotor costs (lower limb muscle volume activated during walking...

متن کامل

Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.

Gaits (footfall patterns) and external mechanical energy patterns of the center of mass were quantified in a generalized, semi-erect mammal in order to address three general questions. First, do semi-erect mammals exhibit the walk/run gait transitions that have been proposed as the primitive condition for tetrapods? Second, do small, semi-erect mammals employ the energy-saving pendular and spri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part A, Comparative experimental biology

دوره 305 11  شماره 

صفحات  -

تاریخ انتشار 2006